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Abstract
In recent years, Chineseword embeddings have attracted significant attention in the field of natural language processing (NLP).
The complex structures and diverse influences of Chinese characters present distinct challenges for semantic representation.
As a result, Chinese word embeddings are primarily investigated in conjunction with characters and their subcomponents.
Previous research has demonstrated that word vectors frequently fail to capture the subtle semantics embedded within the
complex structure of Chinese characters. Furthermore, they often neglect the varying contributions of subword information to
semantics at different levels. To tackle these challenges, we present a weight-based word vector model that takes into account
the internal structure of Chinese words at various levels. The model further categorizes the internal structure of Chinese words
into six layers of subword information: words, characters, components, pinyin, strokes, and structures. The semantics of
Chinese words can be derived by integrating the subword information from various layers. Moreover, the model considers the
varying contributions of each subword layer to the semantics of Chinese words. It utilizes an attentionmechanism to determine
the weights between and within the subword layers, facilitating the comprehensive extraction of word semantics. The word-
level subwords act as the attention mechanism query for subwords in other layers to learn semantic bias. Experimental results
show that the proposed word vector model achieves enhancements in various evaluation metrics, such as word similarity,
word analogy, text categorization, and case studies.

Keywords Chinese word embedding · Semantic analysis · Attention mechanism · Feature substring ·
Morphological information · Pronunciation information

Introduction

Word embeddings, or distributed word vector representa-
tions, are integral to the landscape of natural language
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processing (NLP), facilitating the mapping of words or
phrases onto a continuous vector space. The quality of
word vectors directly affects the performance of various
natural language processing tasks. Moreover, an improved
presentation of word embeddings can contribute to enhanced
performance in downstream tasks, encompassing named
entity recognition [1, 2], text categorization [3], sentiment
analysis [4] and machine translation [5]. Among the existing
word vector methods, the continuous bag-of-words (CBOW)
model and the skip-gram model have received widespread
attention for their simplicity and effectiveness in learning
embedded words in large corpora [6, 7]. The CBOW model
predicts the target word by leveraging surrounding contex-
tual words, whereas the skip-grammodel predicts contextual
words given a target word.

Exploring the disparities between Chinese and English
language structures has been a focal point of research. Chi-
nese characters manifest in two dimensions, unlike English,
which follows a one-dimensional structure. Chinese charac-
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ters leverage the spatial dimensions of the page, enabling
movement in two directions—up and down. In contrast,
English is read from left to right and does not have such
complex geometric variations [8]. These disparities imply
that models trained in English may exhibit diminished per-
formance within a Chinese context. Due to the significant
differences between the two languages, existing word vec-
tor models designed for English do not produce satisfactory
results when directly applied to Chinese texts. English is
composed of a relatively small number of 26 letters, and the
formation of words is relatively straightforward. However,
Chinese is a logical language where characters are composed
of radicals with specific structures, strokes, and even pinyin,
each of which carries a rich semantic meaning.

To address these challenges, recent research on Chinese
word embeddings has focused on utilizing subword-level
information to capture word semantics. Various approaches
have been explored to enhance Chinese word embeddings
by leveraging subword information, including characters [9],
radicals [10], subword components [11], glyph features [12],
and strokes and pinyin [13, 14]. By integrating these subword
features, neural network models can capture more nuanced
semantic intricacies.

A significant difference between Sino-Tibetan languages,
represented by Chinese, and Indo-European languages, rep-
resented by English, lies in the natural pattern of inter-word
separation. In Chinese, words often lack distinct boundary
markers, presenting instead as a continuousflowof characters
that collectively form the sentence framework. Therefore,
before computer processing and analyzing Chinese text, the
first step is to perform effective Chinese word separation in
order to accurately distinguish and identify the individual
lexical units that make up a sentence. Only after the words
are separated will they be input into the model as a com-

plete morpheme to train the word vectors, and the model
constructs the vocabulary based on these words. Effective
word segmentation necessitates external knowledge to iden-
tify specialized entities, exemplified by the classic case of “南
京市长江大桥”(Nanjing Yangtze River Bridge). The accu-
rate segmentation should be “南京市/长江/大桥”(Nanjing
City/Yangtze River/Bridge), rather than “南京/市长/江/大
桥”(Nanjing/Mayor/river/bridge) or alternative formats.

Chinese researchers not only delve into word embed-
dings based on extensive corpora but also posit that the
constituent characters of Chinese words harbor substantial
intrinsic knowledge. For instance, consider the Chinese term
“道路”(road). Its semantics can be learned from the context
of the text corpus, and the meanings of the characters “道”
and “路” can also be inferred. The character “道” may indi-
cate a broad avenue, while the character “路” may indicate
a winding path. his fusion of character combinations imbues
the entire word with distinct semantics. Hence, through the
exploration of the internal framework of Chinese characters,
we can not only extract semantic insights from contextual
cues but also derive nuanced and precise semantic nuances
by scrutinizing inter-character relationships.

In this article, “components” refer to segments of Chinese
characters, comprising strokes that serve as functional units
within the character, also referred to as constituent elements
or parts. For example, in Fig. 1, the components of“路” are
“足,” “夂,” and “口.” Chinese characters are divided into two
kinds of structures: compound characters and unique charac-
ters, in which the compound characters are mostly composed
of several components, while the unique characters are an
integral whole, which can be regarded as a component in
itself. Some studies differentiate between radicals and com-
ponents as distinct sub-word layers. However, this paper
contends that radicals aremerely a specialized subset of com-

Fig. 1 Diagram of the six-level structure of Chinese words

123



Cognitive Computation            (2025) 17:75 Page 3 of 16    75 

ponents and should be categorized as such. The components
“辶” and “足”mean towalkwith one’s feet, which represents
part of the semantics of the word “道路.”

Chinese characters exhibit various structural configura-
tions, including top-bottom, left-right, and other orientations.
Similar to the distinction between perspective subjects and
objects in paintings and primary and secondary strokes in
characters, the relative significance of components in differ-
ent structural positions can also convey semantic nuances
within a character. For instance, the character “您” is a hon-
orifics in chinese. The character is a top-bottom structure,
in which “你” (you) is positioned above “心” (heart). This
structure means “take you to heart” to show respect. Another
example is “回” (back), which is an enclosed structure con-
sisting of two “口”(mouth). From the perspective of character
interpretation, one meaning is that the two “口” form a loop,
and there is always a time to go back to the original point
when you go forward. The other meaning is that the outside
“口” represents home, and the inside “口” is mouth, mean-
ing to eat, combining to mean to go home for dinner. Both
of these interpretations are closely related to the structure of
the Chinese character, side by side proving that the structure
also comes with the semantics of the character.

Chinese characters are combinations of pronunciation,
structure, and meaning, corresponding to phonology, mor-
phology, and semantics in linguistics. In Chinese, the pro-
nunciation of Chinese words and characters is labeled with
pinyin, which is derived from the official romanization sys-
tem of standard Chinese [15]. Unlike English characters,
which typically have one pronunciation, many Chinese char-
acters have multiple readings. These characters are known as
polyphonic Chinese characters, and each pronunciation can
usually refer to several different meanings. For instance, the
character “长” has two pronunciations, “cháng” and “zhǎng,”
each carrying diverse semantic connotations. Depending on
the pronunciation of the same word, different meanings can
be found (See Table 1 for details). Some Chinese charac-
ters are onomatopoeic, used to imitate the sounds of nature,
such as wind, rain, or the cries of animals. For example, when
reading the pinyin “hū hū” for “呼呼,”we can infer that it rep-
resents the sound of the wind. Moreover, characters sharing
similar structures and strokes, such as “土” and “士,” can be
differentiated based on their respective pronunciations (“tǔ”
and “shì ”). Other components of a Chinese character can
be categorized into form-bound and sound-bound, with the
form-bound representing the main semantic meaning and the
sound-bound character characterizing the pronunciation. For
example, consider the character “狗” (gǒu), where the com-
ponent “犭” represents the concept of canines, and “句” (jù)
is sound-bound, with both “ju” and “gou” being possible pro-
nunciations, the latter being applicable in this context. It can
be seen that there are linkages between different subwords
to better express the semantics.

Table 1 Chinese polyphonic character “行”

Character Pinyin Meaning Example

行 Xíng Action 步行(walk),旅行(travel)

Activity 行为(behavior),举行(hold)

Háng Commerce 银行(bank),公司(company)

Trade 行业(industry)

Themost granular part of a Chinese character is the stroke,
which refers to the various shapes of dots and lines that
make up the character and are uninterrupted. The addition
of stroke information enriches the study of Chinese word
vectors, and the most commonly used method is to extract
the stroke sequence of a character, convert it to a numerical
sequence, and generate stroke n-gram information using the
sliding window method. By utilizing the subword informa-
tion at the stroke level, the main semantic information of a
character can be obtained based on stroke n-grams, such as
the most relevant semantic of “您” is “你.”

Many existing models use one or more levels in the
six-level structure in addition to words. For example, the
CWE model [9], considers characters in the word to con-
tain rich semantics and considers char-level subwords in its
model. Meanwhile, the MGEmodel [10] employs three sub-
words levels, namely word, char, and component, whereas
the PCWEmodel [14] integrates subwords at the word, char,
component, and pinyin levels. However, a few number of
models fully exploit the complete six-level structure, poten-
tially overlooking crucial information. On the other hand,
existing models often assign uniform significance to every
subword level in the Chinese lexicon, neglecting to account
for their varyingweights. Thismay introduce noise and affect
the generation of word vectors, so it is necessary to use sub-
word information weights to extract key semantics.

To address these challenges, we propose an Attention-
enabledmulti-layer Subword joint learningWordEmbedding
(ASWE) model. Our model categorizes Chinese vocabulary
into six tiers of subword information: word, char, structure,
radical, stroke, and pinyin. It incorporates an attention mod-
ule that extracts semantics based on the weights assigned
to the subword’s intra- and inter-level information. Specifi-
cally, we systematically record and code values to subwords
such as structure, radicals, and strokes. Strokes are further
categorized into n-grams to extract the semantics of spe-
cific components in a Chinese character. In pinyin subwords,
tones are categorized intofive types and assigned correspond-
ing numbers. The inter-layer attention module gauges the
similarity between word embedding vectors and elemental
embeddings of subwords within the same layer to ascertain
a word’s contribution score within that layer. Similarly, the
intra-layer attentionmodule computes the similarity between
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subword embeddings within a specific layer and the elemen-
tal embeddings within that layer to derive the intra-layer
contribution score.

The main contribution of this paper is to propose a new
method for generating Chinese word vectors, namely the
Attention-based multilevel Subword joint learning Chinese
Word Embedding (ASWE) model. This model classifies
Chinese words into six hierarchical levels of subwords:
words, characters, components, structures, strokes, and pro-
nunciation. By leveraging the capabilities of the attention
mechanism, our model effectively extracts crucial semantic
information across and within different layers. A series of
experiments covering multiple tasks such as word similarity,
analogy, text categorization, and case study have been con-
ducted. The results show that our model not only improves
Chinese embedding technology but also adeptly captures
Chinese semantics with greater precision compared to the
baseline model.

The rest of this paper is structured as follows: in the
“Related Work” section, we will briefly introduce the
research progress of foreign word embeddings and Chinese
word embeddings in recent years; in the “Model” section,
we will present our model architecture and the functional
structure of each module; in the “Experiments” section, we
will evaluate our model in several tasks; in the “Discussion”
section, we discuss the necessity and role of Chinese word
vector models in the era of large-scale models and compara-
tive analysis; in the “Conclusion” section, we summarize the
whole paper and look forward to future work.

RelatedWork

The theory of word vectors originates from John Rupert
Firth’s distributional hypothesis that “the meaning of a word
can be represented by the distribution of its context.” Word
vectors, alternatively termed word embeddings, represent
a fusion of sophisticated language modeling and feature
learning methodologies. Their essence resides in the inge-
nious transformation of an initially disparate and discrete
one-dimensional lexicon of symbols into a denser, continu-
ous multidimensional vector space. In recent years, research
techniques for Chinese word vectors have been divided into
three main categories: static word vector modeling, dynamic
context-dependent word vector generation, and pre-training
word vectors for large models.

For static word vectors, Chen et al. [9] first started the
research on Chinese word vectors. They highlighted how the
semantic essence of Chinese words ties closely to their char-
acters. This led to the development of the character-enhanced
word embedding model (CWE), aiming to enrich word rep-
resentation. At about the same time, Li et al. [16] argued that
the radicals of Chinese characters contain a large amount

of semantic information, and they concatenated the radicals
with the Chinese characters to make predictions, proposing
charCBOWand charSkipGram. Xu et al. [17] later noted that
CWE’s assumption of uniform word contribution overlooks
varying semantic impacts, proposing to the SCWE model.
Chinese characters can be decomposed into many compo-
nents, including radicals. R. Yin et al. also recognize that
radicals contain rich semantics, but instead of using concat,
they add anew layer toCWE, thus proposing theMGEmodel,
which aims at fully integrating information at the word, char-
acter, and radical levels. Yu et al. not only use radicals to
supplement the semantic representations but also introduce
all the components to train the word vectors and propose
the JWE model [11]. Delving into the structure of Chinese
characters, its most basic constituent unit is the stroke, just
as English words are composed of letters. Taking this as a
starting point, the Ant Gold Service AI team [18] draws on
fasttext’s letter n-gram concept and proposes to use stroke
n-gram features to train Chinese word vectors. Bing Ma et
al. [19] argued that the existing methods ignored the problem
of the semantic contribution of the corresponding sub-word
units (characters, radicals, and components) to the Chinese
words, and then proposed to utilize the attentional mech-
anism to capture the Chinese semantic structure of words
and presented a new framework, the Attention-based Lay-
eredWord Embedding (ALWE) model. The main idea of the
model is to generate word vectors by utilizing the inter- and
intra-layer attention modules to obtain the contributions of
subword information and constituents at all levels. Yang et
al [14] recently suggested that the existing methods only get
semantic information from the internal structure of Chinese
characters, which is considered insufficient to capture the
semantics. They proposed a pronunciation-enhanced Chi-
nese word embedding learning method, PCWE, based on
CBOW, in which the pronunciation of the context character
and the target character are simultaneously encoded into the
embedding.

Static word vector models have limitations: each word
corresponds to only one fixed vector, which makes it dif-
ficult to cope with the semantic differences of polysemous
words in different contexts, i.e., the static feature restricts
the portrayal of lexical semantic flexibility. To address this
problem, researchers have proposed the concept of dynamic
word vector modeling, aiming to give word vectors the abil-
ity to change with context. Among them, the EMLo model
[20] is a representative word vector framework. It combines
character-level CNN and bidirectional BiLSTM to generate
diverse contextualized vector representations of the same
word in different contexts, so as to accurately capture and
differentiate semantic diversity and context-dependency of
words.

For dynamicword vectors, Yang et al [21] proposed a Chi-
nese text sentiment analysis model based on Elmo and RNN.
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The model utilizes the Elmo model to learn a pre-trained
corpus and then uses recurrent neural networks to extract the
deep features of word vectors. Liu et al [22] enhanced Chi-
nese word vectors by GCN (Graph Convolutional Network)
and POS (part of speech). GCN is used to construct POS
structure maps and extract syntactic structure information
of POS features. Meanwhile, multilayer attention is used to
distinguish the importance of different features and further
update the vector representation of word vectors about the
current context.

Amidst the rapid ascent of generative big model tech-
nology, a plethora of advanced pre-training word vector
methodologies have emerged, encompassing, but not con-
fined to: the MSE model [23], which specializes in entity
linking tasks and aims to disambiguate named entities in spo-
ken language; the Generalized Word Vector Model CoROM
[24], and the GTE model [25] developed by the Tongyi Lab;
Yudao’s BCE model [26], renowned for its robust bilingual
and cross-linguistic semantic characterization prowess; and
the M3E model [27] by the Moka team. Trained on a large
corpus, these expansive word vectors not only provide higher
accuracy and semantic richness at the word level, but also
exhibit robust generalization capabilities, thus demonstrat-
ing exceptional performance in countless natural language
processing tasks.

Due to the complexity of the ELMo model and the large
resources required for training, and the results of static word
vector models such as Word2vec are also excellent. More-
over, the word vector study in this paper is to evaluate the
impact of multi-layer subword information and attention
mechanisms on word representation, so after comprehensive
consideration, this paper uses the CBOW of the Word2vec
model as the base model for the word vector study.

Model

Chinese language is mainly composed of pictograms and
morphophones, and the parsing study of Chinesewordmean-
ings is also mainly based on the internal structure and
pronunciation of the characters. In this section, we described
the details of ASWE, whichmakes full use of glyph informa-
tion, internal structure, pronunciation, and semantic features
of Chinese characters based on CBOW. The difference
between the two approaches of Word2vec is minimal, and
Skip-gram is not chosen because CBOW runs slightly faster
[28]. ASWE uses contextual words, characters, components,
and structures, as well as contextual, pinyin and strokes of
the target word to predict the target word.

The proposed ASWE model consists of three main com-
ponents: the embedding layer, the intra-subword attention

layer, and the inter-level attention layer. The embedding layer
computes the subword embedding vectors bymultiplying the
encoded representations of subwords at each layer with their
respective embeddingmatrices. These subwords are encoded
from the index in the corresponding subword dictionary. The
intra-subword attention layer then applies an attention mech-
anismwithin each subword layer to obtainweighted subword
representations. This process varies slightly for word-level
contexts compared to other subword levels. Specifically, for
word-level contexts, self-attention units are employed to
adaptively learn context weights, which are then summed
to produce a temp target vector. For other sub-word-level
contexts, the weight is obtained by the dot product of the
sub-word vector and the temporary target vector.

The inter-level attention layer further applies the attention
mechanism across the weighted subword vectors to deter-
mine the contribution of each subword level to the overall
semantic representation of the target word. This process
results in the final semantic vector of the target word, which
effectively integrates the contributions from all subword lev-
els. Figure2 illustrates the architecture of the ASWE model.

The ASWEmodel incorporates both inter-layer and intra-
layer attention modules. As illustrated in Fig. 2, these atten-
tionmechanisms are of two types: the red attention represents
self-attention and the yellow attention represents scaled dot-
product attention. The primary difference between them lies
in the selection of the query (Q), key (K), and value (V)
matrices. In Fig. 3, subplot (a) corresponds to the red atten-
tion in Fig. 2, and subplot (b) corresponds to the yellow
attention. The self-attention mechanism used in ASWE is
fundamentally similar to the one in BERT, as both are based
on the scaled dot-product attention mechanism from Trans-
former models. This approach was chosen for its simplicity
and efficiency, allowing the paper to focus on evaluating the
effectiveness of these methods rather than analyzing a single
method in detail.

Similar to neural network language models, the ASWE
model can be trained by optimizing the classification loss.
The negative log-likelihood loss function, which serves as
the objective function for the ASWEmodel, is defined in (1).
This objective function aims to predict the target word vector
wt using the implicit vector ht and minimize the negative
log-likelihood of the prediction score. Where θ = E, E ′
represents the matrix of input and output word vectors.

L(θ) = −logP(wt |ht ) (1)

In our experiment, the negative sampling technique was
used to reduce the computational load during the training
of the word vector model. When the word list size is large
and the computational resources are limited, the training
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Fig. 2 ASWE model structure

process of general word vector models is affected by the
computational efficiency of the output layer probability nor-
malization. The basic idea of the negative sampling approach
is to simplify the problem by maximizing the probability
of co-occurrence of the two, given the current word and
its context. Specifically, we transform the problem into a
binary classification problem for the target word and the con-
text. This has the advantage of greatly saving computational
resources.

To provide a clearer andmore comprehensive understand-
ing of ASWE, its mathematical model is presented next. The
following sections will follow the “input-process-output”
framework to explain how ASWE utilizes multi-level sub-
word information and attentionmechanisms to improveword
vector training.

Input

• Corpus D: A large-scale text dataset for model training.
• Target word w: Selected words in the corpus.

Fig. 3 Attention in ASWE
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• The context word set Cw: The context word set of the
target word w.

• Embedding Matrices El
s for each subword Layer l: Ran-

domly initialized embedding matrices, where each layer
l has a specific matrix El

s .

Process

(1) Extract the target word and context.
The context words Cw and target words w are obtained
from corpus D. The context words Cw are further
decomposed into multiple subwords SlC across different
layers l: where S1C represents word-layer, S2C represents
character-layer, and so forth. These subwords are then
encoded and batched for further processing.

(2) Negative sampling to obtain negative words.
Use negative sampling to obtain a set of negative words
Nw for the target word w.

(3) Compute subword embedding vectors.
For each subword SlC compute the embedding vectors
xl using the layer-specific embedding matrix El

s .
(4) Intra-subword attention layer.

The famous formula for calculating attention is as (2),
this paper uses the attention method in Transformer.

Attention(Q, K , V ) = so f tmax(
QKT

√
dk

)V (2)

The details of this formula are not explained in this arti-
cle. Interested readers may refer to the original article
[29]. The weighted word-level vector uses the self-
attention mechanism, i.e., Q, K, and V are the same,
so the weighted word-level vector is calculated as:

h1t = Attention(x1, x1, x1) (3)

The other weighted sub-word vector hit is calculated by
theweightedword-level vector to do the attention query:

hit = Attention(x1, xi , xi ), where i in[2, 6] (4)

(5) Global attention on hierarchical subword vectors.
The final hidden layer vector ht is also derived from
the self-attention mechanism and is calculated in a man-
ner similar to (3) except that it differs from the input
Concat(h1t , h

2
t , ..., h

6
t ). The hidden layer vector ht is

the same as ht in (1).
(6) Loss calculation

Compute thefinal vectorht andmultiply itwith the target
word and its negative samples, applying the log-sigmoid

function to compute the loss L:

L = −
∑

w∈D

⎛

⎝log(σ (ht · w)) +
∑

n∈Nw

log(σ (−ht · n))

⎞

⎠

(5)

Output

• Optimized Subword Embedding Vectors El
s : The result-

ing subword embedding matrices after training, adapted
for semantic representation.

• Minimized Loss Value L: The loss value represents the
semantic relevance between the target word and its con-
text and negative samples.

This objective function is an extension and supplement of
PCWE and ALWE. PCWE does not take into account the
use of the attention mechanism to reduce the noise of the
subword information at each level, and the subword infor-
mation of ALWE is not perfect enough. Whereas, ACWE
fully absorbed the features of similar excellent models, sup-
plemented structural and stroke subword information, and
improved the subword information at each level of Chinese
words while using the attention mechanism to minimize the
interference ofmeaningless information, and capturedmean-
ingless information at the embedding level of Chinesewords.
At the same time, ASWE utilized the attention mechanism to
reduce the interference of meaningless information as much
as possible and captured more accurate semantics.

The model architecture is shown in Fig. 2. The model
first obtained the base vectors of the words through the self-
attention mechanism as a benchmark for the similarity of
words, structures, components, pinyin, and strokes. The sub-
words in the layer and the benchmark vector were weighted
according to the cosine similarity, and the vectors of the sub-
words in the layer were obtained according to the weights.
Finally, all the subword vectors and word vectors were used
to get the final attentionword vector using the attentionmech-
anism.

Experiments

Corpus and Parameter

To build the training corpus, we utilized Chinese Wikipedia
dumps,1 employing scripts from the gensim toolkit2 for
dataset conversion during data preprocessing. Due to the

1 https://dumps.wikimedia.org/zhwiki/
2 https://github.com/piskvorky/gensim
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presence of numerous traditional Chinese characters, we
applied the OpenCC3 toolkit to simplify them. Jieba4

was chosen for word segmentation due to its widespread
usage, user-friendly API, and high efficiency. Eliminating
non-Chinese characters and numbers, we filtered out sen-
tences with fewer than 5 words. Ultimately, we acquired
233,666,330 lexical tokens and 2,036,032 unique words,
amounting to a training corpus of 1.67G. Additionally, we
referenced the Han Dian website https://www.zdic.net/ com-
pilation of components and strokes, which includes 13,252
components, 5 strokes, and 20,940 characters.

The structural dataset5 is the sole open-source resource
discovered for this purpose. Nevertheless, the dataset incor-
rectly classifies structures into 14 categories, actually there
being only 13 distinct classes. Consequently, this leads to
redundant classifications, exemplified by the semi-envelope
structure, which should be further divided into upper left
semi-envelope, lower left half-envelope, and several other
specific structures. To rectify these inaccuracies, we manu-
ally corrected 534 errors within the dataset.

We conducted word-to-pinyin mapping, incorporating
pinyin6 atop pcwe to supplement words lacking pinyin anno-
tations. Chinese pinyin devoid of tones was assigned the
neutral tone “5.” This process yielded a total of 3,539,391
pinyin pairs for Chinese words.

ASWE is evaluated against analogous models PCWE,
CWE, MGE, and JWE, employing identical parameter con-
figurations for equitable comparison. Parameters were set as
follows: context window size of 5, word vector dimension
of 200, 100 iterations, 10 negative samplings, initial learn-
ing rate of 0.025, minimum learning rate of 0.0001, and a
subsampling rate of 1e-4.

Experimental Details

Strokes are the most fine-grained units in Chinese charac-
ters, and each Chinese character can be decomposed into
a sequence of strokes with a specific order. According to
the inspiration of [30], we categorize strokes into five types:
horizontal, vertical, apostrophe, dot, and fold, which are also
the five basic types of strokes stipulated in the “Common
Character List of Modern Chinese” jointly issued by sev-
eral Chinese cultural departments in 1988. We coded these 5
types of strokes as shown in Table 2.

Chinese characters’ structure comprises strokes and ori-
entation relationships among components, with 13 structure
types coded as depicted in Table 3.Morphologically, Chinese

3 https://github.com/BYVoid/OpenCC
4 https://github.com/fxsjy/jieba
5 https://github.com/yunzhangwww/feature-database
6 https://github.com/hotoo/pinyin

Table 2 Stroke code

Strokes Horizontal Vertical Left-falling Right-falling Turning

Shape 一 丨 ノ 丶 フ

Code 1 2 3 4 5

characters fall into two categories: monograms and compos-
ite characters. Monograms consist of a single constituent
element with an indivisible structure, while composite char-
acters amalgamate two or more components. Occasionally,
characters with distinct structural features are labeled differ-
ently in academia. For instance, characters like “品,” “晶,”
“森,” exhibit balanced upper, middle, and lower parts and
are metaphorically termed “Pin zigzag structure” by certain
scholars. However, this paper adopts a broader classifica-
tion criterion of upper and lower structure to systematically
explore and analyze Chinese character structures.

The pinyin system encompasses five fundamental tone
classifications: the flat tone, noted for its smooth and calming
pitch; the rising tone, characterized by an upward inflec-
tion; the falling-rising tone, marked by a fluctuation between
descending and ascending tones; the falling tone, distin-
guished by a pronounced descent in syllabic pitch; and the
neutral tone, softly pronounced without a fixed tonal value.
Tonal symbols are typically positioned above or after the
main vowel of the syllable for labeling purposes, with lighter
tones notably lacking specific labels. Tones are coded numer-
ically from 1 to 5, as illustrated in Table 4.

Word Similarity

The measure of word sense relevance is one of the important
properties of word vectors. Word vectors can be measured
according to their ability to express word sense relevance.

Table 3 Structure of Chinese characters

Structure Shape Structure Shape

Left-right 林 Left
surrounding

区

Left-middle-right 慨 Left-upper
surrounding

友

Up-down 客 Left-bottom
surrounding

这

Up-middle-down 意 Right-upper
surrounding

匈

Entire
surrounding

囚 Mosaic 夷

Upper
surrounding

冈 Integral 女

Bottom
surrounding

函
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Table 4 Pinyin example

Tone Flat Rising Falling-rising Falling Neutral

Example mā má mǎ mà ma

Character 妈 麻 马 骂 吗

The relevance between any twowords can be easilymeasured
by utilizing the low-dimensional, dense, and continuous
properties of word vectors. For example, given wordswa and
wb, their cosine similarity within the word vector control can
be used as a measure of their lexical relevance:

sim(wa, wb) = cos(vwa , vwb ) = vwa · vwb

‖vwa‖‖vwb‖
(6)

The word similarity task aims to evaluate the perfor-
mance of word vectors in capturing semantic relatedness.
We use two Chinese word similarity datasets, Word-sim240
and Word-sim297, provided by Chen et al [9] for evalua-
tion. These two datasets contain a series of Chinese word
pairs, each with manually labeled similarity scores. There
are 240 and 297 Chinese word pairs in Wordsim-240 and
Wordsim-297, respectively. The similarity between two-
word embeddings is measured by calculating the cosine
similarity between them. This method can effectively mea-
sure the angle between two-word vectors, thus reflecting their
proximity in the semantic space.We calculated the Spearman
correlation between similarity scores using word embed-
dings andmanual labeling [31]. Higher Spearman correlation
values indicate that word embeddings capture the semantic
similarity between words more effectively. By analyzing the
Spearman correlation, we can determine whether the word
embedding model can accurately reflect human perception
of semantic similarity. The evaluation results are shown in
Table 5.

CWE+P in the table represents the addition of positional
coding to the CWE model. Some of the model experimental

Table 5 Word similarity results

Model Wordsim-240 Wordsim-297

CBOW [7] 0.5322 0.5746

CWE [9] 0.5138 0.6022

CWE+P 0.5075 0.5960

MGE [10] 0.4635 0.5231

JWE [11] 0.5246 0.5641

ALWE [19] 0.5487 0.5628

PCWE [14] 0.5542 0.6087

ASWE-AT 0.5329 0.6140

ASWE-S 0.5474 0.6342

ASWE 0.5434 0.6254

results used are data from the corresponding papers, even so,
the effect of ourmodel is quite good after comparison.ASWE
i.e., our proposed model based on six layers of subwords
and full attention. To validate the effectiveness of the model,
we conducted ablation experiments. In particular, ASWE-AT
represents the removal of the inter- and intra-layer attention
modules relative to ASWE, using summation as well as aver-
aging instead; ASWE-S represents the ablation of the two
added layers of stroke and structure subwords (compared to
PCWE), but retaining the attention module. These experi-
ments aim to explore the effects of different components on
model performance. The visualization results are shown in
Fig. 4.

The experimental results show that ASWE outperforms
most models on both datasets. This indicates that using
a combination of deeper morphological, semantic, and
phonological features provides better access to the seman-
tics of words. Specifically, ASWE and its ablative variant
experiments performed slightly worse than PCWE on the
Wordsim-240 dataset but obtained the best review results
on Wordsim-297. And among the three different forms of
ASWE, the best results were obtained by ASWE-S. ASWE-
S, i.e., the four layers of words, characters, components,
and pinyin subwords, introduces the inter-layer attention
module and the intra-layer attentionmodule to learn aweight-
based representation of contextually relevant word vectors
and obtains a semantic distribution of words in a context by
automatically adjusting the relationship between the words
in the context and other words so that words that are related
to the context have the importance of words with different
semantic relevance is weighted differently. In addition, the
importance of subwords in each layer is weighted according
to their similarity to the word vector to avoid semantic inter-
ference and noise caused by subword information that does
not contribute much to the semantics of the word.

Word Analogy

Word analogy is another common internal task evaluation
method for word vectors. Analyzing the distribution of word
vectors in the vector space, it can be found that suppose
we have two-word pairs (wa, wb) and (wc, wd), which have
the same relationship syntactically or semantically. In other
words, these two-word pairs have similar meanings or func-
tions in a particular context. Based on the properties of
word vectors, we can observe the geometric properties of
vwb − vwa ≈ vwd − vwc . Example:

vking − vman ≈ vqueue − vwomen (7)

This equation shows that for two-word pairs (king, man),
(queen, woman) with the same relation, there is the same
logical relation between their semantics, so the word vectors
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Fig. 4 Results of word similarity task

are relatively close to each other in the vector space. If we
subtract the word vectors of the first word pair, the result
obtained is very close to the result obtained by subtracting
the word vectors of the second-word pair.

We use the analogical reasoning dataset constructed by
Chen et al. in CWE, which contains 1124 sets of evalua-
tion datasets for Chinese analogical questions, divided into 3
themes: Capitals (677 sets), State (175 sets), and Family (272
sets). The final evaluation index is the correctness of reason-
ing. The experimental results are shown in Table 6, where
the symbols of each model are consistent with Table 5.

Throughout this study, we meticulously scrutinized the
performance of every model in a word analogy task. Initially,
our ASWE and its diverse iterations continue to excel in this

Table 6 Word analogy results

Model Total Captical City Family

CBOW 0.6699 0.7622 0.7200 0.4081

CWE 0.7687 0.8744 0.8800 0.4338

CWE+P 0.7865 0.8641 0.8857 0.5294

MGE 0.6388 0.7696 0.8343 0.1875

JWE 0.8301 0.8953 0.9200 0.6103

ALWE 0.6200 0.6380 0.8460 0.4300

PCWE 0.8176 0.8907 0.9029 0.5809

ASWE-AT 0.8345 0.9217 0.92 0.8345

ASWE-S 0.8132 0.8892 0.9257 0.5514

ASWE 0.8407 0.9291 0.92 0.5699

task, surpassing the majority of competing models, indica-
tive of their superior efficiency and accuracy in handling
such tasks. Additionally, it is worth mentioning that although
PCWE exhibits superior performance on the Wordsim-240
dataset, it lags behind ASWE in terms of semantic inference
capabilities. This disparitymay stem fromPCWE’soptimiza-
tion strategy, which, despite targeting specific aspects, falls
short of comprehensively enhancing performance across all
tasks. While the models exhibit comparable performance on
capital and city data, their performance significantly dete-
riorates on household data compared to the former two
datasets. This implies that current models still lack pro-
ficiency in character relationship reasoning. Furthermore,
results from ablation experiments indicate that ASWE out-
shines its ablated counterparts, ASWE-AT and ASWE-S.
Notably, ASWE-AT, focusing solely on subword informa-
tion, closely resembles the original ASWE in performance.
Conversely, the ASWE-Smodel, excelling inword similarity
evaluation, exhibits relatively inferior performance in word
analogy tasks, falling short even compared to the PCWE
model. This raises a question that deserves deeper investiga-
tion. Maybe ASWE-S’s prowess lies in its adept handling of
word similarity tasks via its accentuated attentional mecha-
nism, effectively capturing contextual semantic information.
Nevertheless, in word similarity tasks, deeper subword infor-
mation seems pivotal for enhancing the generalizability of
word vectors. Consequently, ASWE-S might exhibit slight
inadequacy in generalization owing to its emphasis on con-
textual semantics, performing relatively inferiorly compared
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Fig. 5 Results of word analogy task

to ASWE and ASWE-AT, which incorporate multiple layers
of subword information. This underscores the importance
of considering task-specific characteristics and balancing
the relevance of different information in enhancing overall
performance when designing word vector models. The visu-
alization results are shown in Fig. 5.

Text Classification

Text categorization is widely used to evaluate the effective-
ness of word embeddings in NLP tasks [32]. We use the
FudanChinese text dataset,7 which contains documents on20
topics, for training and testing. After [18], we select 12,545
(6424 for training and 6121 for testing) documents in five
topics, namely, environment, agriculture, economy, politics,
and sports. We replaced the trained word vectors with word
vectors of the same words in the dataset, and the others with
randomly generated word vectors, and then froze the gradi-
ent update of the embedding layer. For simplicity, we trained
TextCNN as a classifier, and the models used all achieved the
best classification results in about 30 rounds, as shown in the
table below. As shown in Table 7, all the methods achieved
more than 98% accuracy, and ourmethod performed the best.
This is because our method not only captures the seman-
tics with different subword structures, but also analyzes the
weights of the subword hierarchies in them, and ACWE out-
performs other baselines.

7 https://download.csdn.net/download/weixin_42691585/12751311

Case Study

In this paper, we not only validate the value of Chinese char-
acter subword information in improving the quality of word
embedding expressions but also provide an in-depth com-
parison of the efficacy of different approaches in identifying
words that are closest to the meaning of a particular target
word through a series of meticulous case studies. In Table 8,
we detail the top 10 most similar lexical examples identified
by each model for the two target words.

Taking “强壮” as an example, the word contains “强,”
which vividly characterizes an individual as physically fit
or powerful. Although the CBOW model relies heavily on
contextual information to construct word embeddings, the
top-ranked words identified by the CBOW model, such as
“前肢” and “尾巴,” are not semantically closely related to
“强壮.” The results generated by CWE, on the other hand,
contain more character elements of “强” and “壮,” which
confirms the effectiveness of the idea of combining word and
character embedding in CWE to a certain extent; however,
it is worth noting that the CWE also contains words such
as “瘦弱,” which are contrary to the original meaning. In

Table 7 Accuracy of text
classification

Model Accuracy

PCWE 98.50%

ASWE-AT 98.66%

ASWE-S 98.59%

ASWE 98.63%
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Table 8 Case study for
semantically related words

word CBOW CWE MGE JWE PCWE ASWE

强壮 健壮 健壮 主密码 健壮 强健 健壮

结实 粗壮 强健 强健 健壮 高大

强健 强健 金眸 粗壮 粗壮 强健

鳍状肢 身强体壮 短尾蝠 高大 结实 瘦弱

尾巴 壮健 健硕 结实 壮健 魁梧

矮胖 壮硕 锐利 体格 壮健 强大

前肢 坚韧 体格 壮硕 壮硕 瘦削

短尾巴 肥壮 马羚亚科 聪明 敏捷 瘦削

身躯 瘦弱 波塞东龙 壮健 吃苦耐劳 吃苦耐劳

长尾巴 凶猛 腕力 勇猛 白皙 肌肉发达

朝代 历朝 历朝历代 藩属国 封建王朝 历朝 文景之治

各朝 历代 历朝 王朝 封建王朝 总录

隋唐 历朝 萍踪侠影录 历朝 王朝 各朝

分封制 两朝 类书 历朝历代 各朝 大燕

前朝 诸侯国 年号 嫔妃 历朝历代 王朝

历朝历代 大统历 盛衰 属明 年号 封建王朝

典章制度 封建王朝 封建王朝 各朝 丁朝 历朝

历代 列朝 叶榆县 两朝 吴朝 夷狄

明清 各朝 相权 历代 历代 国祚

封建王朝 统元历 嫡庶 君主 大燕 建都

Given the target word, the top 10 simlar words identified by each method are listed

contrast, the MGE method performs relatively poorly, and
its generated words such as “主密码” and “短尾蝠” are less
semantically related to “强壮,” while the JWE shows higher
accuracy. JWE, on the other hand, shows higher accuracy
and most of the words have strong semantic associations
with “强壮,” except for some words such as “聪明,” and
“敏捷” generated by PCWE, “吃苦耐劳” and “白皙” do not
match the context of “强壮.” However, our ASWE model
has improved compared to PCWE, although there are still
incomplete matches like “吃苦耐劳,” the generated words
are more relevant to the target words overall.

Taking “朝代” as an example, the polyphonic character
“朝” in this word represents the historical dynasty or the
era ruled by a certain emperor. In this context, although the
CBOW algorithm identifies high-frequency words such as
“分封制” and “典章制度” that appear in the textual envi-
ronment togetherwith “朝代,” it is not satisfactory in terms of
semantic accuracy and correspondence.However, the seman-
tic accuracy is not satisfactory. Similarly, CWE is also limited
in that the terms it found related to the calendar theme, “统元
历” and “大统历,” do not accurately reflect the meaning of
“朝代.” Like the result for “强壮,” MGE fails to effectively
capture the words closely related to their semantic meaning
when analyzing “朝代.” In the results of JWE, except for
some words such as “属明,” most of the words are clearly
semantically related to “朝代.” As for PCWE, it incorrectly
generates “丁朝” and “吴朝,” which did not exist in history.

AfterASWEexcluded the irrelevant term“GeneralRecords,”
the rest of the words generated by ASWE better reflected the
semantic association with the concept of “朝代.”

In summary, the CBOWmodel relies solely on contextual
word information, which in some cases may lead to the gen-
eration of words with weak semantic associations with the
target words. CWE, MGE, and JWE take into account the
character, radical, and internal structure information in the
training process, but this may lead to the limitation of retriev-
ing words with similar meanings to the target words based
on the sharing of the same characters or structural features
while ignoring the actual differences in the meanings of the
words. PCWE tries to enhance the level of information about
the characters by integrating their phonological attributes,
whereas our proposed ASWEmodel outperforms the above-
mentioned model in the overall performance of case study
analysis. The overall performance of our proposed ASWE
model outperforms the above models in case analysis, but it
still needs to focus on and improve the problem of semantic
fit between individual generated words and target words.

In evaluating the effectiveness of word vectors in char-
acterizing semantic relevance, we employed a systematic
methodology. To aid visualization, we randomly selected 50
common nouns for analysis. Utilizing the PCA technique,
we projected these vectors onto a two-dimensional space
for visual representation. In Fig. 6, closer proximity between
words indicates stronger semantic relevance. The illustra-
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Fig. 6 2D Projection of Word Vectors via PCA

tion unveils notable semantic clustering. For instance, the
closer proximity between “国家”(country), “世界”(world)
and “信息”(information) indicates their high semantic relat-
edness, aligning with human cognitive and linguistic pat-
terns. Likewise, “历史”(history), “社会”(society) and “知
识”(knowledge) exhibit significant clustering, affirming their
semantic relatedness. This suggests that ASWEword vectors
capture both surface and structural semantic relationships.

Complexity and Time Consumption

Our model ASWE adds stroke and structure sub-word infor-
mation and uses intra-and inter-layer attention mechanisms
to enhance Chinese word vector training. These measures
will result in additional time overhead and memory stress. In
view of scientific rigor, we choose PCWE, themain reference
model of this paper, to compare the algorithm complexity and
training time-consuming.

The structure of the PCWE model is embedding layer,
average layer, and output layer. The input of the embedding
layer includes words, characters, components, and pinyin.
The average layer computes the average of these subwords
to get the intermediate vector, and the output layer computes
the similarity of the intermediate vector to the targetword and
the negative sample word and then computes the log softmax
loss.

Analyzing the dataset for this paper, each word contains
an average of 3.22 characters and 1 pinyin, and each Chi-
nese character contains an average of 1.79 components, 1
structure, and 12.84 strokes. For the following analysis, we
set the word vector dimension to 200, the context window to

2 ∗ 5 = 10, and the number of negatively sampled words to
10.

On memory pressure, because of the large size of cor-
pora, both PCWE and ASWEmodels show the phenomenon
that the parameters of the embedding layer are much larger
than those of other layers, this results in a small difference
between the two models in the learnable parameters. The
difference in memory pressure between the two models is
mainly due to input, asASWE’s stroke layer growswithword
size. The input size of PCWE was calculated to be approxi-
mately 209.84tensor , whereas the input size of PCWE was
approximately 655.49tensor , 212.38% larger than the for-
mer.

In computation, the embedding layer is mainly an index
lookup operation, without a large number of multiplication
or addition operations, while the output layer is the same two
models, so the difference of computational load mainly lies
in the middle layer, that is, the average layer of PCWE and
the attention layer of ASWE. After calculation, PCWE had
a computational load of approximately 65M floating-point
calculations per word, while ASWE had a computational
load of 90M , which was 38.46% larger than the former. We
then re-ran the PCWE and ASWE models separately and
recorded their training duration, with PCWE taking 257min,
and ASWE taking 368min, 43.2% more than the former. It
turns out that the training time is longer than it should be
because PCWE uses more sub-word information and has a
larger input dimension, leading to more frequent memory
access during model training. A comparison of complexity
and time is shown in Fig. 7.

Although our model ASWE has increased the algorithm
complexity and training time compared to the baseline
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Fig. 7 Complexity and time
comparison

model, it also improves the performance of our model in
many tasks, such as word similarity, word analogy, and text
classification. Performance and complexity cannot be both,
andwe think the increase in complexity isworth it. Of course,
we will also consider optimizing the time performance of the
model in the future.

Discussion

The Necessity of ASWE in the Era of Large-Scale
Models

Large pre-trained models such as BERT and GPT have
demonstrated outstanding performance in various natural
language processing tasks, thanks to their ability to uti-
lize rich contextual information for semantic inference. In
Chinese language processing, some challenges such as poly-
semy, synonymy, and idiomatic expressions often necessitate
the inclusion of structural information from individual char-
acters, the embedding of Chinese characters remains crucial
and has unique advantages in the following aspects:

• Problem of polysemy: There are a large number of pol-
ysemous words in Chinese, and their meanings often
depend on the internal structure and context of the charac-
ters. Large pre-trainedmodels typically infer themeaning

of polysemous words through context, but in some spe-
cific contexts (such as short text length, unclear context,
etc.), they may not accurately capture subtle semantic
differences. Chinese character embedding can provide
richer semantic information by refining the character
layer and its constituent elements (such as pinyin, strokes,
etc.), thereby helping to overcome some contextual lim-
itations in handling polysemous words.

• Idioms and fixed collocations: Chinese idioms, idioms,
and other fixed collocations are often determined by
the combination of words and grammatical structures.
Although large-scale models can capture these combi-
nations in certain situations, they may be more difficult
to handle Chinese idioms, classical texts, and so on. By
modeling the hierarchical structure of characters, ASWE
can provide more accurate semantic representations for
these complex language phenomena, thereby enhancing
the unique advantages of the model in Chinese process-
ing.

• Complexity of language phenomena: The language phe-
nomena in Chinese are rich and diverse, such as the
construction of semantic words, antonyms, and character
shapes, which pose higher requirements for word embed-
dingmodels.ASWEcaneffectively improve the accuracy
of semantic representation by capturing this information
at different levels, such as pinyin, drawing, etc.
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Comparative Analysis with Existing Large-Scale
Pre-trainedModels

Although large pre-trained models such as BERT and GPT
have shown excellent performance in various natural lan-
guage processing tasks, they still have some limitations:

• Context dependency problem: Current large-scale lan-
guage models (such as BERT, GPT, etc.) rely heavily on
contextual information to infer word meanings in Chi-
nese processing, especially in understanding phenomena
such as polysemy, synonyms, idioms, etc., which often
require the combination of character structure informa-
tion. The ASWE model refines semantic expression by
embedding words at different levels (such as pinyin, rad-
icals, etc.), which can extract key information from the
internal structure of words even in the absence of context.

• Lack of generalization ability: Although large models
perform well in various tasks, their generalization abil-
ity may be limited in certain specific tasks. For example,
when dealing with more specialized text types such as
classical Chinese, poetry, literary works, etc., pre-trained
models may not fully understand the deepmeaning of the
text, while ASWE can capture these complex phenom-
ena through the hierarchical structure of characters and
provide more refined semantic representations.

Comparative ASWE model with existing large-scale pre-
trained models, such as BERT, GPT, etc. The advantages of
the ASWE model are as follows:

• Advantages of Short Text Semantic Representation: The
ASWE model has significant advantages in the seman-
tic representation of short text, especially in certain tasks
such as sentiment analysis, keyword extraction, and short
text classification. It effectively avoids the interference of
contextual information in long texts on the understand-
ing of short texts and improves the accuracy of semantic
understanding in short texts by weighting information at
the level of sub words.

• Performance of specific tasks: For example, in text clas-
sification tasks, ASWE can accurately capture detailed
information through refined sub-word structures, pro-
viding more accurate results than traditional large-scale
models. Especially in tasks that require fine-grained
semantics.

All in all, although this study does not claim that ASWE
outperforms large pre-trained models in word embedding,
it proposes a promising approach that, when integrated with
these models, could enhance their performance. The primary
contribution of this paper is to demonstrate the potential of
the six-layer semantic structure and attention mechanisms in

enrichingword embedding. Future researchwill explore how
incorporating these elements into large models can further
improve results.

Conclusion

In this research, we introduced a novel approach named
ASWE for learning Chinese word embeddings. ASWE inte-
grates various features of Chinese characters, including
characters, components, strokes, structures, and pinyin, from
morphological, semantic, and phonological perspectives. It
employs multiple attention mechanisms to determine the
weights among these features, resulting in a weighted-word
vector representation. Ultimately, the effectiveness ofASWE
is validated through extensive experiments, including word
similarity, word analogical reasoning, text categorization,
sentiment analysis, and case studies. The experimental find-
ings reveal that incorporating additional Chinese character
subwords enhances the analogical capabilities of Chinese
word vectors, whereas employing attention mechanisms
facilitates the acquisition ofmore hierarchical semantics. For
future research, We intend to extend the concept of ASWE
to dynamic word embeddings and large-scale pre-trained
word embedding algorithms. And the concept of sub-word
is applied to the semantic representation of the large model,
which will help the large model to analyze and deal with
short texts, complex ancient Chinese characters, poetry, and
other scenes more effectively.
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